Imaging the state-specific vibrational predissociation of the hydrogen chloride-water hydrogen-bonded dimer.

نویسندگان

  • Blithe E Casterline
  • Andrew K Mollner
  • Lee C Ch'ng
  • Hanna Reisler
چکیده

The state-to-state vibrational predissociation dynamics of the hydrogen-bonded HCl-H(2)O dimer were studied following excitation of the HCl stretch of the dimer. Velocity-map imaging and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the HCl stretch of the dimer, HCl fragments were detected by 2 + 1 REMPI via the f (3)Delta(2) <-- X (1)Sigma(+) and V (1)Sigma(+) <-- X (1)Sigma(+) transitions. REMPI spectra clearly show HCl from dissociation produced in the ground vibrational state with J'' up to 11. The fragments' center-of-mass translational energy distributions were determined from images of selected rotational states of HCl and were converted to rotational state distributions of the water cofragment. All the distributions could be fit well when using a dimer dissociation energy of D(0) = 1334 +/- 10 cm(-1). The rotational distributions in the water cofragment pair-correlated with specific rotational states of HCl appear nonstatistical when compared to predictions of the statistical phase space theory. A detailed analysis of pair-correlated state distributions was complicated by the large number of water rotational states available, but the data show that the water rotational populations increase with decreasing translational energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging the state-specific vibrational predissociation of the ammonia-water hydrogen-bonded dimer.

The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded ammonia-water dimer were studied following excitation of the bound OH stretch. Velocity-map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the bound OH stretch fundamental, ammonia fragme...

متن کامل

Imaging H2O photofragments in the predissociation of the HCl-H2O hydrogen-bonded dimer.

The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded HCl-H(2)O dimer was studied following excitation of the dimer's HCl stretch by detecting the H(2)O fragment. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the HCl stretch of...

متن کامل

Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in the water dimer.

The hydrogen bonding in water is dominated by pairwise dimer interactions, and the predissociation of the water dimer following vibrational excitation is reported here. Velocity map imaging was used for an experimental determination of the dissociation energy (D(0)) of (D(2)O)(2). The value obtained, 1244 ± 10 cm(-1) (14.88 ± 0.12 kJ/mol), is in excellent agreement with the calculated value of ...

متن کامل

Experiment and theory elucidate the multichannel predissociation dynamics of the HCl trimer: breaking up is hard to do.

The breaking of hydrogen bonds in molecular systems has profound effects on liquids, e.g., water, biomolecules, e.g., DNA, etc., and so it is no exaggeration to assert the importance of these bonds to living systems. However, despite years of extensive research on hydrogen bonds, many of the details of how these bonds break and the corresponding energy redistribution processes remain poorly und...

متن کامل

Imaging the state-specific vibrational predissociation of the C2H2-NH3 hydrogen-bonded dimer.

The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded ammonia-acetylene dimer were studied following excitation in the asymmetric CH stretch. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the asymmetric CH stretch fundamental, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 114 36  شماره 

صفحات  -

تاریخ انتشار 2010